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ABSTRACT

A summary ,of modifications to Aerotherm's Boundary. Layer Integral Matrix

Procedure (BLIMP) code is presented. These modifications represent a preliminary

effort to make BLIMP compatible with other JANNAF codes and to adjust the code

for specific application to rocket nozzle flows. Results of the initial verifi-

cation of the code for prediction of rocket nozzle type flows are discussed.

For those cases in which measured free stream flow conditions vere used as input

to the code, the boundary layer predictions and measurer: nts are in excellent

agreement. In two cases, with free stream flow conditions calculated by another

JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were

in fair agreement for one case and in poor agreement for the other case. The

poor agreement is believed to result from failure of the turbulent model in BLIMP

to account for laminarization of a turbulent flow. Recommendations for further

code modifications and improvements are also presented.
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SECTION 1

INTRODUCTION

Boundary layer behavior along the walls of a rocket nozzle plays an im-

portant role in the performance of the nozzle. The shear layer determines part

of the thrust loss of the nozzle and the energy layer controls the heat trans-

fer to the wall and the wall temperature. There is a well established need

for a computer code which can calculate boundary layer effects for flows with

large pressure gradients, chemical reactions, and a wide variety of wall con-

ditions. To this end Aerotherm's Boundary Layer Integral Matrix Procedure

(BLIMP) was selected by the JANNAF Boundary Layer Subcommittee as the standard

performance evaluation method.

The prinmary purpose of this report is to present the results of a pre-

liminary effort to provide a version of the BLIMP code that will serve as the

standard boundary layer prediction tool for rocket nozzle flows. Section 2 con-

tains a brief summary of the special modifications made to BLIMP to increase its

utility to the rocket community. (Complete documentation of the originhl BLIMP

code can be found in References 1 and 2.) The results of the verification tests

for the four sets of data considered are contained in Section 3. In general the

predictions ar-e consistent with the data in the wall region of the boundary layer.

This is based on wall heat flux comparisons. There are some discrepancies in the

wake region; however, the predicted integral parameters are in reasonable agree-

ment with the data. In one case, for a laminarizing turbulent flow, the heat

flux predictions did not agree with the measurements. Section 4 contains recom-

mendations for further code developments and improvements.



SECTION 2

CODE MODIFICATIONS

This section contains a brief discussion of the additions and modifica-

tions to the BLIMP code which have been incorporated as a result of the present

work. Details of these modifications are contained in the interim user's man-

ual, Reference 3. This new version of the BLIMP code has been denoted as ver-

sion J to distinguish it from the standard BLIMP version.. Complete documenta-

tion of the original code is presented in References 1 and 2.

2.1 NAMELIST

The BLIMP code was modified to accept the nozzle wall contour as (x, R)

coordinates in the namelist format output by the Two-Dimensional Kinetic (TDK)

computer program (Reference 4). These coordinates are then used to calculate

the nozzle wall length (assuming straight line segments between coordinate

points) which is utilized in the internal coordinate system of the BLIMP code.

The pressure ratio which is required by BLIMP is also in the TDK namelist. A

subset (max 40) of the input stations (max 500) is then selected by the user

to be the BLIMP solution stations.

2.2 THERMOCIIEMICAL DATA

The BLIMP input forrmat has been changed to accept the thermochemical

constants for calculation of enthalpy, entropy, and specific heat in the poly-

nomial form used by other JANNAF codes (Reference 5).

2.3 INPUT/OUTPUT CHANGES

In addition to the input changes described in Sections 2.1 and 2.2, the

BLIMP code has been modified to accept input in either the International System

of Units (SI) or the English Engineering System of Units. The entire output of

the code has been formatted for SI units; however, in the case that English

SUniits are used as input, they will also be used as output (the output headings

remain in SI units). The output has also been modified to include the boundary

layer thrust loss (AF), the total heat flux to wall (Qw), and the total wall

area (A ) calculated in the following manner:
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P6*
AF = 2qRp u2 8 cos (1 - 2)
-e-e pu Rds

S

Q = 2TiRqds

S

A w = 2nRds

where s is the wall length and q is the heat flux per unit area.

An option has been added to calculate a new body contour or a new inviscid

flow field contour based on a correction to the input contour. The new contour

is given by

RNEW = RINPUT - 6* cos

where the + sign is for a new body contour and the - sign is for a new inviscid

flow contour. For example, if the input contour is the desired inviscid flow

contour, then the new contour, calculated with the + sign, would be the cor-

responding nozzle wall contour. The new contour can be punched on cards in a

form suitable for input to the TDK program.

2.4 REFIT OPTION

An option has been incorporated into the LIMP code to adjust the nodal

distribution as the solution moves downstream. This is accomplished by refit-

ting the boundary layer p:cofiles and shifting the nodes to insure that the nodes

are always well placed. This option maintains a nodal distribution in the

boundary layer which leads to better accuracy in defining the velocity profile

and more efficient use of computation time.
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SECTION 3

RESULTS OF VERIFICATION ANALYSIS

In a previous study (Reference 6) extensive comparisons of BLIMP predic-

tions were made to experimental data. The cases considered included supersonic

flow with zero pressure gradient, hypersonic flow with zero pressure gradient

and with a favorable pressure gradient, hypersonic flow with nonreactive blow-

ing, and supersonic flow with nonreactive blowing. Rather than repeat the broad

range of cases considered in Reference 6, the present study focused only on

rocket nozzle type flows, i.e., those flows with very large favorable pressure

gradients. One case considered in Reference 6 (Brott et al., Reference 7) is

of interest here and is discussed in Section 3.1.

New data sources were sought which would provide detailed and accurate

velocity and temperature measurements in the boundary layer, skin friction mea-

surements, or heat flux measurements in flows with pressure gradients of the

same magnitude as those in rocket nozzles. The pressure gradient similarity

is desired because it is expected to be the dominant term in the boundary layer

equations. In addition, the data should contain stagnation and free stream

pressure measurements, and stagnation and wall temperature measurements. The

recent open lit-erature was examined and members of the JANNAF Boundary Layer

Subcommittee were requested to provide any data sets of which they had knowl.edgeq

Personal contacts at Rocketdyne and Aerojet were also requested to supply use-

ful data on actual rocket firings.

The Rocketdyne data discussed in Section 3.2 is the only useful data

which was found for actual liquid rocket engine tests. The input and some of

the output for the predictions of this case are included in Reference 3 (the

interim user's manual for this version of BLIMP) as a sample problem. The hot

air space shuttle main engine (SSME) model test data were also supplied by Rocket-

dyne. These data consisted only of pitot tube measurements in the boundary layer

at the exit of the nozzle; however, it was selected by NASA as a test case for

-BLIMP prediction. The most detailed, complete, and relevant data considered

for verification was that of Back and Cuffel (Reference 8) and is discussed in

Section 3.4. The input data and nozzle contours for the cases presented in

Sections 3.2, 3.3, and 3.4 are contained in Appendix A.
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No adjustments to the BLIMP code were attempted to obtain agreement be-

tween predictions and data. Modifications to the turbulent model and comparison

with other models, e.g., Bushnell-Beckwith and Cebeci-Smith, should be investi-

gated in future studies. Frequent reference is made to "the wall region" and

"the wake region" of the boundary layer. In general these are rather loosely

defined terms applied to turbulent boundary layers. The wall region refers ap-

proximately to the 10-20 percent of the boundary layer near the wall. This is

the region in which the "law of the wall" part of the turbulent model in BLIMPJ

is valid (see Reference 6 for a discussion of the turbulent model). The wake

region is the remainder of the boundary layer.

3.1 DATA OF BROTT, YANTA, VOISINET, AND LEE

The hypersonic flow over a flat plate with favorahle pressure gradient

data of Brott, et al. (Reference 7) is most nearly representative of nozzle

flows of the data considered in Reference 6; although, the pressure gradient

is not nearly as severe (more than an order of magnitude difference). Repre--

sentative comparisons from Reference 6 are shown in Figures 3-1 to 3-3 for stag-

nation conditions in air of

P = 1.013 x 106 N/m 2 (10 atm)

To = 634.5 0 K (6100 R)

The momentum thickness Reynolds number (Re = PeUe/ue) comparison in Figure 3-2

provides information on the predictii.on of the overall boundary layer profile,

since it is essentially an integral property. The skin friction coefficient

(Cf/2 = T /p u) comparison shown in Figure 3-3 is a measure of how well the

velocity profile is predicted near the wall.

The conclusions from these three figures are that the predictions are

very good at the wall (Figures 3-1 and 3-3) and that they are only slightly in

error in the outer law of the wall region (Figures 3-1 and 3-2).

3.2 ROCKETDYNE: 02/H2 TWO-DIMENSIONAL NOZZLE

This case* is representative of the type of data that can be expected

--ftom hot fired nozzles using 02/H2 fuel systems. The gas side wall temperature

and the wall heat flux distributions were measured; however, no boundary layer

The data for this case were supplied by Mr. George Osugi of Rocketdyne.
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measurements were made. Since heat flux is an important quantity and this case

was for a representative liquid rocket fuel it was felt that predictions would

be of interest.

The'nozzle geometry, fuel mixture ratio, stagnation conditions, calcu-

lated axial pressure variation, and wall temperature variation were provided.

(The nozzle is .0762 m (3 in) wide.) The stagnation conditions were given as:

P = 4.6182 x 10 6 N/m2 (45.57 atm)

T = 3570 0 K (6430 0 R)0

M.R. = 6.15

The injector plane was at the entrance to the nozzle and the initially low heat

transfer shown by the data (Figure 3-4) was assumed to result from the presence

of a liquid layer near the injector. Accordingly, the prediction was started

downstream of the injector and assumed to have an established boundary layer at

the starting position. The mixture ratio in the boundary layer was assumed to

be 6.15. The heat flux data and the results of the BLIMP predictions are shown

in Figure 3-4. The three cases shown in Figure 3-4 are for a fully turbulent

boundary with a starting length of 0.0561 m, an initially laminar boundary layer

with a starting length of 0.0561 m, and an initially laminar boundary layer with

a starting length of 0.0286 m. (The starting length is the wall length from

the start of the boundary layer growth to the first solution station. Adjust-

ment of this length has the effect of changing the boundary layer thickness at

the first solution station.) Transition for the laminar cases was at Re =

400 and is shown on the figures. It is clear that the laminar boundary layers

do not adequately predict the heat transfer. The turbulent predictions are ap-

proximately 60 percent too large near the throat. Thus it seems that the bound-

ary layer should not be either laminar or turbulent, and the possibility of a

laminarizing boundary layer should be investigated.

Schraub and Kline (Reference 9) have postulated that laminarization occurs

in turbulent flows for values of the parameter K = (~/u) (du /ds) exceeding

about 3 x 10-6 (see also Reference 10). The value of K at the first solution sta-

tion is 1.33 x 10- . This strongly suggests that the turbulent boundary layer

is.Jlaminarizing, which would result in a reduction in heat flux. The value

of K increases through the throat (KT = 2.81 x 10- s) indicating that the flow

would become even more "laminar like" in the throat region of the nozzle, thus

redubing the heat flux from its turbulent value.

This test case leads to two very important conclusions. First, it is

necessary to have reasonable knowledge of the nature of the history of the boundary
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layer at the first solution station (e.g., did the boundary layer develop over a

combusting liquid layer?). Secondly, laminarization of the rocket nozzle bound-

ary layer may be a very significant effect and should be adequately modeled in

the prediction tool.

3.3 SSME MODEL TEST - HOT AIR

These data from a heated air flow test in a 1:9.118 scale model of the

space shuttle main engine were provided by Rocketdyne. Pitot tube measurements

of the boundary layer were made in the exit plane of the nozzle (area ratio =

77.5). The pitot tube used in the wake region had dimensions 1.65 x 10
- 3 m

O.D. (0.065 in) and 1.02 x 10 - 3 m I.D. (0.040 in). Near the wall the probe was

flattened with O.D. of 3.04 x 10- 4 m (0.012 in). The relationships of these

probe sizes to the boundary layer dimensions are shown in Figure 3-5. Stagna-

tion conditions were given as:

P = 1.027 x 107 N/m 2 (149 psia)

To = 634.5 0 K (610 0 R)

The wall contour was provided and, for the short duration of the test, the wall

temperature was assumed constant at 294.4 0 K (530 0 R). The axial pressure distri-

bution was provided from the output of the TDK program for the same conditions

and geometry using the perfect gas option with ratio of specific heats = 1.4

and molecular weight = 28.58.

The results of the BL4MP predictions for boundary layer Hach numer di.s-

tribution at the exit plane are presented with t-he da.ta in Figure 3-5. The

Mach numbers were calculated from the measured pressures using normal shock re-

lations. The major differences between the predictions and the data are in the

region 0.05 < y/6 < 0.37. Two BLIMP predictions were made, one for transition

at Re 8 = 600 and the other for fully turbulent flow. There was no significant

difference in the results at the exit plane for the two cases. The predictions

for the transi..tion at Re = 600 case are shown in all the figures. No laminar-

ization effects are expected since the value of K at the throat is 4.83 x 10 - .

The predicted momentum thickness and displacement thickness are shown

in Figure 3-6. The agreement with the values calculated from the data is good;

although, perhaps fortuitous. The predicted velocity profile and velocity pro-

file calculated from the data are given in Figure 3-7. No temperature measure-

ments were made in the boundary layer and all calculations from the dIata were

3-8
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made by Rocketdyne assuming an adiabatic boundary layer.* Thus, calculated

velocities would tend to be too large and this effect would increase as the

wall is approached. This is reflected in Figure 3-7. The Mach number results

are thus considered to be a more valid comparison.

Based on the fact that these predictions were made from completely ana-

lytical input, i.e., stagnation conditions and wall temperature, and pressure

distribution calculated by the TDK program, the results are reasonably good.

It should be pointed out that the BLIMP model for calculation of transport prop-

erties (y and k) does not, in general, work well at very low temperatures such

as those in the divergent region of this test case. In the present case, for

example, the Prandtl number was calculated by the code to be 0.684 (one atmo-

sphere, 273 0 K) as compared to a more reasonable value of 0.73. The overall ef--

fect of these discrepancies appears to be slight, particularly since much of

the boundary layer is turbulent. It is recommended, however, that a homogeneous

gas option with special low temperature properties for air be added to the 
code

to predict room temperature air flows.

3.4 BACK AND CUFFEL - SUPERSONIC NOZZLE WITH HEAT TRANSFER

These experiments were carried out in a cooled, conical nozzle with a

convergent and a divergent half angle of 100 at the Jet Propulsion Laboratory,

California Institute of Technology (Reference 8). The air flow was tripped

well upstream of the converging section so that the flow was fully turbulent

throughout the nozzle. These flow conditions are relivant to conditions in

rocket engines operating at thrcust levels for which laminarization does not

occur and provide a good test for the basic BLIMP capabilities for rocket nozzle

conditions. (The throat value for K, defined in Section 3.2, is 1.0 x 10-6.)

Static pressures, wall heat fluxes, and coolant-side wall temperatures

were measured along the nozzle wall. Heat flux was determined by calorimetric

imeasurements in circumferential coolant passages. Boundary layer surveys were

made with a flattened pitot probe 0.000127 m (0.005 in) in heighth and with

thermocouple probes.

Velocity boundary layer profiles were measured at five stations; the

locations of three of these are shown in Figure 3-8. The edge values of ue for

the predictions and the data are given in Table 3-1. In all the figures the

test values of the various parameters are used as normalizing factors. The

measured and predicted velocity profiles are shown in Figure 3-9 and the dis-

placement thickness (6*) and momentum thickness 8, in Figure 3-10. The velocity

profiles. are. in good agreement except for the position X/RT = -6.414 vwhere there

Personal communications with Mr. Bill Wagner of Rocketdyne.
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are differences (less than 10 percent, however) in the wake region. The inte-

gral properties 0 and 6* which reflect profile shape are in good agreement ex-

cept at the position X/RT = 10.797. The difference in 6* is a consequence of

a difference in the predicted and measured temperature profiles. The total

temperature* profile is shown in Figure 3-11. (The normalizing factor is the

value of T* - T* from the data.) Since the velocity profiles at X/RT 
= 10.797

e w T
are in very good agreement, the differences in total temperatuie can be attrib-

uted to differences in static temperature. These slight differences may result

from the use of a constant value of 0.9 for the turbulent Prandtl number. The

different shape 'of the static temperature profiles will cause different density

profiles. The density-velocity product, mass flux, shown in Figure 3-12, is

used for the calculation of 6*. It is the large negative contribution to 6*

from the region above pu/Peue = 1 in the data that causes the difference in

the measured and predicted values of 6*.

The near wall behavior can be evaluated by examining the heat flux data

shown in Figure 3-13. The excellent agreement supports the conclusion that the

near wall region is properly accounted for in BLIMP. The more detailed prese-

tation of the velocity profile at X/RT = 10.797 shown in Figure 3-14 shows that

the data does not extend into the viscous sublayer region; therefore, one must

rely on the heat transfer measurements for comparing wall behavior. The excel-

lent overall agreement in velocity profiles is apparent

TABLE 3-1

EDGE VALUES OF VELOCITY FOR BACK AND CUFFEL DATA

X/RT -11.21 -6. 14 10.797

u (m/s), Data 42.0 79.4 1100.9

ue(m/s), BLIMP 42.4 80.0 1111.6

3.5 SUMMARY

The two cases of Rocketdyne data represent almost completely analytical

predictions, i.e., from given stagnation conditions and wall geometry an axial

:pressure varition was predicted and used in the boundary layer predictions.

The two-dimensional nozzle predictions do not fit the data at all; however,
th~eflow could well be of the laminarizing turbulent type for which the turbu-
lent model in BLIMPJ has not been verified. Thus there is a need to investigate

Total temperature, T*, is the measured stagnation temperature profile in the
boundary layer.
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the modeling of laminarization in the code. The SSME air flow data are reason-

ably well predicted. More detailed data of this type would be useful for code

verification. In contrast, the data of Back (and of Brott) contained measured

pressure distributions which were used as input to BLIMP. The resulting predic-

tions show much better agreement with the data.
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SECTION 4

RECOMMENDATIONS

As a result of working with BLIMP and rocket nozzle problems the follow-

ing additions and modifications to the present version are suggested.

1. In order to provide the capability of comparison of results and

potentially for the selection of the "better" model, the eddy

viscosity models of Cebeci-Smith and BushnellBeckwith should be

added to the code. Further verification of the present model (of

Kendall) and comparison of the new models using experimental flows

providing tests of various features of the models which are important

!to nozzle conditions should be made. Of particular interest is the

prediction of laminarization.

2. Cold flow model tests using air, or other homogenous gases, could be

treated by the BLIMP code without the use of the complete chemistry

solution.- Simplified procedures and improved computation economy

could be achieved through the addition of a homogeneous gas option.

This option could also offer the advantage of improved low temperature

thermodynamic properties and transport properties.

3. For greater compatibility with the Two-Dimensional Kinetic program

the following recommendations are made:

. Addition of Kinetics

o Improved matching of edge conditions on velocity, pressure,

and their first derivatives, and improved curve fits of

pressure gradient. The present method was not designed for

the type of pressure distribution encountered in nbzzle flow

problems, For rocket nozzle flows the largest terms of the

boundary layer momentum equation contain the gradient of

pressure and the gradient of edge velocity; thus accuracy in

these terms is most important.

4. The complexity of the input can be decreased by an expanded use of
namelist input and built-in default values. This would greatly aid the
inexperienced user and pose no limitations to the generality of the code.
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5. Overall accuracy and computer usage could be improved by the follow-

ing:

o Expanded three temperature range to provide for better low

temperature curve fits of thermodynamic properties.

e Binary diffusion option for economy for problems with complex

chemistry.

o Improved transport property calculations, especially for

light elements and air.

o Improved built-in first guess of fully turbulent flows. The

built-in first guess is for a laminar profile. For those

problems with well-established turbulent profiles at the first

solution station, a turbulent first guess would improve computer

economy.

o Improved convergence criteria tailored to nozzle flows.

The present convergence criteria have been developed and tested

for reentry conditions where pressure gradients are not nearly

so severe as in rocket nozzles.
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APPENDIX A

INPUT DATA AND NOZZLE CONTOURS



A.1 ROCKETDYNE 02/H2 TWO-DIMENSIONAL NOZZLE INPUT DATA

1010032210202000000 TEST CASE ROCKEF)YNL - PUNCH n R-DELTA*CS 01100 A
2 02100 A

19 03100 A
4s03201 A

4-9 30 03300 A

9 12 16 19 21 23 25, 27 29 31 32 33 35 33 03J01 A

£ 44 46 47 49 0302 A

$7%,PUT
XYTAL 0,0 , ,0 , 0,0 , 2?506 , -24,516 , 23,2.b , 21.935 r

=n0,645 , -19,355 , l1A.064 -, 16,77 , 15,484 , -r 14,193 -12,903 ,

P 600 r .10,3?2 , -B,645 , -7,742 , -6,452 , -5,161 , -3.871 2, 1 ,

~ 935 , 1,613 -1,290 ,r 0,968 0,S45 -0,323 , =0,19 * 0,0

0 0181. 0,1303, 0.?839, 0.,271f 0,5639, 0,7226, 0,880 1,032

1 1232, 1,390 , I,553 F 2.015 , 3,007 , 4,024 i 5,007 , 6,72 ,

1B902 , 10,720 , 11,575 , yITAB=. 0,0 00 0,0 6,55

6 387 6,219 , 6.345 , 5,864 , 5,671 , 5,071 , 5,264 , 5.0-39 ,

4T807' 4,561 , 4 297 , 4,019 , 3,716 3387 , 3,032 , 2,632

. 187 1,a8 1 , 1 3704 1,258 1,I61 , 1,090 , 1.062 , 1,013 ,

I 006 r 
1 ,00 0  1.0001, 1,0019, 1I0077, q,0174, 1,0310, 1,0510,

1 076 , 1tI039, 1.1239, j.1903F 1,2342p 1.3856, 1,6239, 1.896

160 2,938 , 3.217 35,690 4,000 , PITA3= 0,0 0,0

60 . 0,9953, 0 951( 0,0 r 99 n, 0,0 f 0,9931 , 0,0 f

0 0 0 0,9913, 0 0 0,0 0,0 ,91371, 00 , 0,0

6,9771r 0,0 0 9565, 0,0 0,1734, 00 0,n806, 0,0

0 6653, 0 0 .577 r 0,0 0531 r 05071t 0, 774, 0,0 ,

O6 415r 0,0 , 0,0 , A,3204, 0,0 , 0,0 , 0,2564, 0,0

S0 0,1446, 0.0 , 0,0750, 0,0609, 0,0 , 0,0474

1ED 04100 A

0o 002 ,006 01 ,025 ,06 ,15 0201 A

4 7 1,0 5 25 0 40 A

106, ,95 1 3.0,5 0300 A

S 0,05 0,1 .-0,25 0,35 0A5 0,6 04401 A

S 0,85 0,95 0,98 1,0 - 0410e A

03937 05100 A

4,tB2E06 .07100 
A

9 t v 6b 0 (l 
07200 A

-9, 0 07300 A

44, 11,825 018 ,9 ,9 06100 A
.1z 8E 06 09600 A

*12g 8E0611100 A

H fYDROGEN le008 V1,0 110 A

3: OXYGEN 16,0 6, 15 1202 A

300, 10009 50009 13100 A

H J 9/65H 1, G 300, .5000, 1

t r E01 0, 0, 0, ,Oc

0,5~41762%905m00601763E400 0,25 E+oti 0 3

o, 0, 0 2 5471627G+0'05"0,6011
7 6 2E+00

SJ 6/620 1, G 300, 5000, 1

0 Si20596E+0o.0r27550619E.004-031028033P08 0,~0510674E-ll jo3680515ES15 2

0129230803E05 0,49203080Et01 0,2946427E+010,-pi38
16 65E. O 2 0,24210316E'05 3

,i 6028432EE08 0,38906969E-12 0.291764E+05 0,29639949E+01 4
02, J 9,650 2, G 300, 5000, 1
0 62195V 501 0,7361826E03-0,19652228E-06 0,36201558L10-0,28945627E-14 

2

Q,2019825E+010 0,36150960E01 0.36255985E+0I0,s187 8214E-02 0,70554511E05 3

, 6(635137r08 0,2155593E= 10, 10475226E+04 0,i3052778E+01 4

H2. J 3/611 2. G 300, 5000, 1

3)O00901Ci&Q O O0,5111946qE 03 0,526 21~OE07-0.,3409973E-10 0,369RS355Em14 2

e~073001i8E030, 19629421E+01 0, 30574~051E*01 026765200E02wO,580991~2Em05 3

OpS5210 3 9EOO 8~OI 2273Eo11-0,890474E+030O,22
9 9 7056E+01 4

O9. J 3/660 J, H 11 G 300, 5000 1

01V910627E+01 0,95931650E-03o0O 19041702E-06 i0,37566A6E 10 090122512E15 2

0O 93538154+04 0,540230415E+01 036375903E0U0,10778859E02 0,968,30378E06& 3

0 R71a3972E-09 0,2257109'E-12 0,36412823E+04 0,99370009E+00 4

A-i



H?'T J 3/6IH . , 8 ip G 300,. 5000 1
0;27167633E+01 0,2O!51 37 E12-0.80221374E-06 0,1022668'EJ9-0.488IJ721 5E-t Q

-0, 9905826E+05 Oo6b3S67itL+ 10.00701275E+o01-0,1 08499qE-02 0, 1521130E-05 3
-02963704E-08O 0,807021 031L-12-,3079722E+05-0,322700d6E+00 4

I3LAST A
15201 A
15202 A
15203 A

b300 650, 658. 700, 861, 919, 911, 16201 A
906, 900, 894, 888,9 886, 883, 869, 16202 A
833, 708, 5, 488Y 422, 16203 A

16601 A
16602 A
16603 A
1660f A

16605 A
16606 A
16607 A
16608 A
16609 A
IA6T 4

-24 -20 -16 -12 -8 -4 0 4 b 12

X/RT

Figure A-1. Rocketdyne 2-Dl Nozzle Contour

Area Ratio = 4.0
Aspect Ratio (Width/R ) - 22.8
Length = 0.1484 m (5.846 in)
RT - 0.003937 m (0.155 in)
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A.2 SSME MODEL TEST

1,. 10500620210202000000 SSME -HOT AIR TEST SC4LE 9,118 LAM/TURB TRANS 01100 A

2, 2 
03100 A

3, 27 .
03201 A

4., 0,24 
03300 A

5, 3,48 14 
03300 A

6, 1 2 3 6 8 10 11 12 13 14 20 39 12 -P3 14 03402 A

7,. 16 48 57 66. 87 122 181 264 299 320 334 345 3Q8 03402 A

8, $INPUT

9, XITAB(1)= -2.717022, -2.47788, -2.15826, -2.010015,-1,565286 1.2194646 2

10, 
197227261 ,82040 237,,,527525,-.379276,r,231327r.1156932 

0337625,

11, 0.000000 r 6.075117-03, 1,231079-02, 1,870280-02, 2,525359-02,

12, 3V19424502, 3,877306-02, 4,571314-02, 5.263351-02, 6.0100457-02, 6.7
19506-02,

13, 7,502766-02, 8.270299-02, 9,032509-02, 9.869772-02r 1.066222-01, 1,14902501,

iq, 1,233188 07 , 1, 79b00 0 1, 1,407471-01F, 1,1
19 7 15 - 0  1.508871 -01 , 1. 8207 01,

15, 1,77816-01, 1.876050601, 1,976a02-0, 2 ,079257-01, 2,1q80C0"01, 2,29324301

16, 24065587-01, 2,3201901, 2,63208!101, 
2,744026-01, 2.856230-01, 2.961851-01r

17, 3,031009-01, 3,193750-01, 3,30629301, 3,040i13-01r 3.5325285010, 3.678,5 !-01

18, 3,759130-01r 3.A72946-01, 3,987101"601 4.1012 -01, . 8216062-01, 4.330608-01,

19, 4,445557-01, q,561464-
0 1 , 4,677053

0 1  01, .17934 2-0, 1,909567-01, 5026377-01,

20, 5,113794-01, 5,260996-01, 5,378936-01, 5.497450
S -0 1  5.615061-01, 5,735022-01,

21, 5,85'73 PO1, 5,971463-01, 6,094928-01, 6.215906-01, 6,337071-01, 6.45950-01,

22, 6,581369-01, 6,70397 '01, 6,827351-01, 6.95120l01e 7.075415-01, 7.2004U08-01,

23, 7,325961-01, 7,451761-01, 7,578391-01, 7.719930-01, 7,861871-01, 8,0066"01

24, 8,i18028011 8 292338-01, 8,437684-011 8583,16-01, 8,729813-01, 8.67750-0r,

25, 9,025d'1"01, 9.17467701c 9,324'l'01, 9,4754142-01 9.627294-01, 9.780056-01,

26, 9,933L0-01, I.00882+00, 1,021326+00, 1 039 9900f 1.055752+00, 1 071532+00,

27, 1,057U73+00, 1,103549100, 1.119635-it0, 13538+00, 1,152272+00, 1.168681tOV,

28, 1,185253+00r 1,2019500 1,216703+01+00 1 00, 133110+ 12 +0.269742+00,

29, 1,?87000+00, 1,304353i00, 1.321839±00, 1,3391 I+00, 1.357202+00, 1.375037+00,

30, 1,393036+01 1, 41'9800, 1,429373001, 1i,q4712+00, 
1.il6tb44+00, 1.t31500+00,

31, 
9i.9150

0 0 1 1,51393700, 1,529394+00, 1.5'957+00, 1.560619+00, 1.576250+00,

32, 1,592015+00, 1,607863+00, 1,62377+00, 1"b5720+00, 1,655781+00, 1,671950400,

33,. 1,6880087+00, 1,704369+00r 1,720742+00, 1 737104+00, 1,753664+00, 1,770269+00,

34, 1,786990+00, 1,803678100, 1,82052IH00O, 1,63716700, 1,854/4 4+00, 1.871506+00,

35, 1,88871+000 1 .90605,+00, 1,92331400, 1.9 07"8+00, 1,9508426+00, ,9759300,

36, 1,993663400, 2,0111490100f 2,029q45+00, 2. 0Q73,400 , 2.06547400,r 2,08376200

37, 21101940400 2,12032800, 2,158832+00, 2 15756000, 2,176077+00, 2.1(i5875+00,

35, 20213852+00 2.232733+00, 2,251832100, 2.2710 2+001 2,29031,7+00, 2.309731,,

39, 2,329268+00, 2,348 9 600, 2,368596+00, 2.3 5 43+00, 2. 0418+00, 2o02't6600

40, 2 416613+00, 2,068912+00, 2489357+00, 2,509779+00, 2.530609+00, 2.5 1237+00

41, 2,571960+00, 2,592126 00 2,614028+00, 2,6;5239+00, 2 6L6194+00, 2.677940+00,

42, 2,699514 1+0 2,721115+00, 2,72907+00, 2.7 q) J1+00, 2.7 .602+00, 2.08946+00,

43, 2,831237+00r 2.853629+00, 2,876083+00, 269813200, 
2.921520+00, ?.94316-0,

44, 2,967325+00, 2.990531,+00, 3,01365600, 3,0i7030+00, 3.060650+00, 3.0811700,

45, 3,107060+00, 3,1317b0+00, 3,155762+( 0 3.179830+00, 3,204101+00, 3.228517+0op

46, 3,252940+00, 3,277587+00, 3.30220+00, 3.327201+00, 3.352227+00, 3.3771O80+0(,

147, 3,402627+00, 3.4280384000, 3,453714+00, 3.479239+00, 3,505038+00, 3.531009i00,

48, 3,557065+00, 3.58323200. 3,609605+00, .6361001.00, 3.062683+00, 3.689/i91+00,

49.. 3,716983+00, 3,771157+00, 3,826843+00, 3.883827+00, 3.91065+00, 
1:,00096100,

50, 4,061393+00, q4.122955400, 4,18552800, 4 .2
19q 5452+00r 4.311761+00F 4.381105+00,

510 4,114709+00, 4,517652+00, 4,58607700, q,6930+00, 14.732327+00, 14.8065?7+00,

52. 1,802200+00, 4.95917800, 5,037312+00, 5,115979+00, 5.196201+00, 52 61012100

53, 5,3,5444+00, 5.q51202+00, 5,538635+00, 5.27642+00, 5,7189'l1000, 
5,6119681400,

54. 5.906367+00, 6.003927+00, 6.10328600, 6.203074010, 6.309415+00, 6.416321+00,

55, 6.525873+00, 6,638005+00, 6,752699+00, 6,869501+00, 6,89!83+00, 7.110710+0(

56, 7,23 ( 8+00, 7.360109+00, 7,487697100, 7.617452+00, 7,749263+00, 7.83043+00,

.57 8,019027+00, 8,157287+00, 8,295187+00, 8,41705+00, 8.568281+00, 6.735131+00,

58, 8,891336+00, 9.007753+00, 9.207730+00, 9.371195+00, 9.538828+00, 9.710073+00,

59. 9,85)16+00, I1.006370401, 1,02 0
l 8 6+01

', I,0q.3l 01, 1.062I456+01, 1.081977±01,

60, 1,101593+01, 1,t22277+01,1,143118 1 +01,. 12 1.164+01 r 1.1661120,tOr 1.20021+01,

61, 1;2309357+01, 1.251 03101 1, 277702+01, 1,301752;+01, 1.326369001, 1,351 42+01,

62, 1,3771211+01, 1,00329+01, 1.429982+01, 1.547224+01, 1,145039+01, 1,513370+01,
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63, 1.542333+01, 1.571868+01, 1,601991+01, 1,632718+01, 1.664108+01, 1.696098+03,
64, 1,726794+01, 1,76204801, 1,796002+01, 1.83965q401, 1.866032+01, 1,902024+01,
65, 1,938760401, 1.97624001, 2,041 79+01, 2.053 77+01, 2.093249+01, 2.133799+03,
66, 2,17510+01, 2.217280+01, 2,260293+01, 2.30415q+401 , 2.3L6920+01, 2,352260+01,
67, YITAB(1)=1.732051,1.732051p 1,732051, 1,725721, 1.62783b, 1,460524, 1,35J0850,
68, 1.284 0, 1.143514, 1,074717, 1,027053, 1.0.2136, 1,00V57,
69, 1,000000+00, 1,000047-00, 1.o01i93O00, 1,00446+00r 1.000814+00,
70, 1,001304t00, 1,031922+00, 1.002675+00, 1,003579+00, 1.004635+00, 1.005854+00,
71, 1,0072474 00, 1.0088211+00, 1,010596+00, 1.012576+00, 1.014779+00, 1.017218+00,
72,. 1,0199J2+U0, 1,022879+00r 1,026139100, 1,029718+00r 1.033641+00, 1.037939600,

73,. ,01264 +000 , 1,0471 10000, 1,053070+00, 1.051659+00, 1.Oh6530+00, 1,074078+00,
74, t1082501+00, 10.910+40 00, 1,099451+00, 1,107359+00, 1.116284+00, !,1211712+00,
75,. 1,133157+00, 1.11159+00, 1,!150005.00, 1.15846+00, 1.16660 00, 1.175318+00,
76, 1,103745+00, 1.192209+00, 1,200681400, 1,209154q00, 1,217668+00, 1.226151+0C,
77, 1,234677Oo0, 1,243220+00, 1,251750+00, 1.2603t5+00, 1.268888+00, 1.277485+00,
78, 1,256!20±00, 1.294720+00, 1.303374+00, 1,312056+00, 1,320719+00, 1.32943600,
79, 1,336174+00, 1.346905+00, 1.355690+00, 1.364493+00, 1.373298+00, 1.382158+00,
80, 1,391032+00, 1.399916+00, 1,408856+00 1,417809+00, 1.4126776+00, 1.435801+00,
81, 1,414840I00U, 1,15395f00, 1, 653010+00,r 1,473170+00, 1,463347+00, 1.493607+00,
82,. 1,503631+00, 1 5141 6t00, 1.5211521+00, 1i53 5378+00, 1.515325100, 3.555821+00,
83,. 1.566319+00, 1,576906+00, 1,587531+00, 1,598175+00, 1,608909+00, 1.b19669f00,
80, 1,630067+00, 1.641379+00, 1,652239+00, 1.b632 900, 1.674271+00, 1,68529300,
85, 1,696427+00, 1.707643+00, 1,71835+00, 1,730139±00, 1,741516+00, 1,7528811000,
86, 1,764364+00, 1.775910+00, 1,787460100, 1,799123+00, 1.810843+00, 1.822583400,
87, 1,834436+00 18146335*00, 1,858272+00, I,870321+00, 1,882106+00, 1.894547+00,
88, 1,906799+00, 1.919074+00, 1,931427+00, 1.943911+00 1.956345+00, 1.967714+00,
89, 1,978109+00, 1.988467+00, 1,99B8145+00, 2,009203+00, 2.019783+00, 2,030227+00,
90,9 2,040762+00, 2.051351100, 2,061931+00, 2.072535+00, 2.08321400, 2.093939*00,
91, 2.101417100, 2.115391+00, 2,126224t00, 2,137050+00, 2.147900+00, 2.158833+00,
92, 2,169814+00, 2,180706+00, 2,191781+00, 2,202379+00, 2.213971+00, 2.225091+00,

93, 2,236297+00, 2,247555+00, 2,258762+00, 2,270078+00, 2,201507+00, 2.29280+00,
94, 2,301232+00, 2.315729+00, 2 327276+00, 2,335777+00, 2.350390+00, 2.362116+00,
95, 2,37374+00, 2.3850!6+00, 2,397253±00, 2,t090'9+00, 2,.120913+00, 2.I326t2+00,
96, 2,4q4873+00, 2,456789+00, 2,1468842+00, 2,48072+00, 2.493124+00, 2.505268600,
97. 2,51752 +00, 2,529863+00, 2,542113+00, 2.55 197+00, 2,566963+00, 2.579441900,
98, 2,591906+00, 2.604501+00, 2,617145+00, 2.6297(2+00, 2.6'2468+00, 2.655301+00,
99, 2,668009+00r 2.660866+00, 2,693807+00, 2.70578+00, 2.719704+00, 2.732778+00,
100, 2,75905+00r 2.758976+00, 2,772180+00, 2,785305+00, 2,798679+00, 2.8120114+00,
101, 2,8251139+00, 2,38847+00r 2.852287+00, 2.8530;3+00, 2,879432+00, 2.892986+00,
102.. 2,906672+00t 2,920441+00, 2,934110+00r 2,917925+00, 2.961873+00, 2.975655+00,
103, 2,989599+00, 3.003635+00f 3,017649+00, 3,031693+00r 3.045855+00, 3,060038+00t
104,. 3,074196+00, 3.088484+00, 3,10283+00g 3,1171"5+00, 3.!31511+00, 3, 145031+00,
105, 3,16011 B+00 3.171155+00, 3.189630+00, 3.201135+00, 3,210796+00, 3. 233553+0u,
106, 3,2.18262+00, 3,263031±00, 3,277916+00, 3,29271q000, 3,307685+00, 3,322713+00,
107, 3,337769+00, 3.368207*0r 3,399030+00, 311,4 3046+00 3.*462328+00, 3,49 4592+00,
108, 3,527437+00, 3.560757+00r 3,594396+00, 3,62521+00, 3. ,3122+00 , 3.696500±00,
109, 3,730i59+00, 3.770306+00, 3.807013+00, 3800056+00, 3,68 1509+00, 3.919508+00,
110, 3,95809+00, 3,997024+00, 4,036280+00, 4.075077+00, 4.116400+00, 4,157254+00,
111,. 4,198639+00,4,240380 0, 4,282610+00, 4,3254n2+000 4,368780+00, 4,1412786+00,
112, 4,457331+00, 4,502545+00, 4,548471+00, 4.,59512+00, 4.642591+00, /1,690797+00,
113, 4,739769+00, 4,7891453+00, 4,83901300, 4,890759+00, 4,9,12211+00, 1,994121+00,
114, 5,061424+00, 5.099019+00, 5,151910+00, 5,205168+00, 5.258715+00, 5.312512+00,
115, 5,366631+00, 5,021082+00, 5,75932+00, 5,531205+00r 5,58698+00, 5.643386+00,
116, 5,700308+00, 5.757903+00, 5,815929+00, 5,874483+00, 5.933782+00r 5.993590+00,
117, 6,053776+00, 6,114419+00, 6,175748+00, 6,237332+00, 6.29929 9+00, c.361835+00,
118, 6,424513+00, 6,487705+00, 6,551260+00p 6.641 56+00r 6.679095+00, 60743151+00,
119 6,80 7 81 9 +00, 6,872217+00, 6,937106+00, 7,001699+00, 7,066552+00, 7,131360+00,
120, 1 7,196123+00, 7,260697+00 7.325375+00, 7.33 977200. 7,054065+00, 7,517884+00,
121, 7,581595+00, 7,644993+00, 7,707951l00, 7,770 -,9+ 00, 7,832558+00, 7,8914100+00,
122, 7,955132+00, 8.015377+00, 8,0711924+00, 8.133751+00r 8 191821+00, 83,248870+00,
123, 8,305030+00, 8,3b0216+00, 8,410355+00r 0,467353+00, 8,51913B+00, 0,569623+00,
124,. 8,616737+00, 8,666398t00, 8,712597100, 8,757217+00, 8,80022+00, 8,803307+00
125, PITAB(1)=1,0,
126. ,9993289+00, .9968773+00, ,9803995+00, .9813572+00,
127, ,9560030+00f ,9299963±00, ,8910000+00, ,83!419 5t00, ,0029922+00,
128, ,7699914+00, ,6719799+00s .4690063t00, 393946b 00 ,3782794+00,
l129, .3629402*00, ,347886t00, .3330963+00 .3185543+00, ,30'2776+00,
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130. ,2902298+00r, 2761112+00, ,2 6 2 8 2 4 2 +0 0, .2419'553500, ,2363410t00o
1310. .2230505+00e .2107971+0.0, ,1983850+00, ,1862244f001 ,17413224+00,
132, .1526801+00, ,1513146+00, ,1402307+00, .1294371+00, .1189491+00,
133, ,1087770+00, ,9893494-01e ,8943256-01, .8023920-01, ,7151720-01
134, ,6313558-01, ,5516107-01, ,5070982-01, ,5035799-01, ,5010706-011
135, ,9767211-01, .4947381-01, ,4913162-01, ,4878317-011 .4679959-01F

136. ,4805610-01, .0840110-01, .4605607-01r t4791657-01, .4756982-01,
137, ,4722082-01r ,4707113-01, ,4672511-01, ,4659512-01, .4624500-01,
138.. .4589290-01, ,4578011 -01, .4542807-01, ,li32350-01, ,0497600-01r
139, ,4G62136-0,O ,452357-01 , 1416952-01, ,4381375-01, .4371584-01,
140. .4336002-01, .4300399-01 ,4290566-01, ,42519 3-01, ,L219238-01,

141, .4209341-01, .4173674-01 , 4137928-01, ,412R026-01 .4092337-01,
142, .4056591-01, .4016910-01, .4011234-01, .3)75515-01, V3966070-01r
143.. ,3930432-01, .3894769-01, ,3881508-01, ,394105-01, ,3829038-01,
144 ,3789626-01, .3750164-01, ,3737501-01 .3696226-01, ,3658935-01,
145, ,3546531-01, ,3607424-01, ,356336-01, ,3556163-01, ,3517260-01,
146, .3478407-01, ,3466451-01, ,3427786-01, ,3415992-01, ,3377541-01,
147. .3339106-01, ,3327528-01, ,3289362-01, .325123 01, ,323981-01,
148 ,3202020-01, .3164240-01, ,3153108-01i ,3115595-01, ,307817-01,

149, .3067260-01, .3030111-01, ,2993072-01, ,29323?5-01, ,2945637-01,
150, ,2309004-01, .2898557-01, F286220e-01 ,2326001-01, ,2815797-01,

151, .27 79 8 7 5 -01r ,2704120-01, .2734001-Olr .2698566-01, .2b886R3-01,

152, .265367-01, 2621366-01, ,2591793-01i ,2587523-01r .2558200-0i1
153. ,2529023-01, .2524974-01, .2496085-01, ,2467323-01, .2038749-01,
154. .2134995-01, .2006686-01, ,2378537-01, ,237497')-01, ,2347142-01, .

155. ,2319025-01, .2291899-01, ,2288647-01, 42261393-01r ,?234306-01,
156, ,223122-01, .2204437-01, ,2177793-01 ,2151305-01, .2148132-01,
157, ,2121962-01, .2095966-01, .2093349-01, ,2067650-01r .20/2105-01r

158 ,2039652-01, ,2014424-01, ,1989334-01, ,1960005-01, .1962106-01,

159, ,1937512-01, ,1913081-01, .1910794-01, .1886657-01, ,1862703-01,
.160. .1B38933-01, .1536896-01, .1813016- 01, ,17/0107-01, ,1788262-01,

161. ,1765257-01, ,1742005-01, .1719763-01, ,1718185-01, .1695820-01,
162. .1673634-01r .1672241-01, 1650346-01, ,1628651901, ,1607093-01,
163, .1605959-01, 1534703-01, .1563633-01, .1562675-01, .1541882-01,
164, ,1521266-r1, .1520482-01, ,1500148-01, ,1479983-01, ,1460015-0i,
165 ,1459472 , 39767-01, ,1420247-01, ,14i1955701, .1400612-01,
166. ,1381535-01, ,1381313-01, .1362502-01, .134q356 -01, ,1325418-01,
167, .1325422.-01 1307226-01r ,1289213-01, .1289357-01, .1271603-01,
168, ,1250018-01, ,1254319-01, .1236980-01r ,1219315-01, .1220253-01,

169. .1203333-01, .1136587-01, ,i.170025-01, .1170554-01, .1154331-01,

170.. 1i3R178-01 i.138942-01, .1123012-01, ,1107?61-01 ,1106152-01

171. .1092617-01 ,1077260-01P .1078257-01- I003115"01 o104R144-01r
172, .1009259-01, .1034t80-01 ,1019885-01, ,1005155-01 ,1006729-01p

173. .9920930-02F 9764270-02, 9797875-02, .9658?20'-0,r .9521635-02,

174,. ,9535710-02, ,9264285-02, .9143167-02, ,9021932-02, .8756996-02c

175. ,8637295-02, ,8517986-02, .8260701-02, .814308'-02, ,8026902-02,

176,. .7910104-02, .7662924-02, ,7548961-02, ,743573C-02, ,7322693-02,
177. ,7086801-02, ,6977633-02, ,6869901-02 , 6762903-02, ,6538982-02,
178. ,6035813-02, .6334363-02, .6233711-02, ,613359-02, .6034801-02,

179, ,52>5913-02r ,5731683-02, .5636894-02, ,55112559-02, .5408765-02,
180, ,5355157-02, ,5262225-02, .5169365-02, ,5076350-02, ,Y983142-02r
18 , ,4589821-02, .11796053-02, ,4703356-02, .4610705-02, .4510901-02,
182, ,442 203-02 .4q338923-02, .0251115-02, .4165120-02, .4080682-02,
183, ,3993379-02, .3916921-02, .3837061-02, .3758551-02 .3u81569-02,

184, ,3681789-02, .3605872-02, .3530771-02, .3456505-02, .3382521-02,
185, ,3309336-02, .3306768-32, .3233617-02r ,3160939-02, .3088585-02,
186. .3083052-02, .3011100-02, .2939805-02, .2932050-02, ,2860762-02,
187, .2790575-02, .2780555-02, ,2710681-02, .269B526-02, ,2626761-02,
188, ,2615975-02, .2506929-02, ,2533571-02, ,24650i1-02, .2051545-02,

189, .2384562-02r ,2370067-02, ,2304022-02, ,228 339-02, .2272856-02,
190, ,2207800-02, ,2191073-02, ,2127079-02, ,21090 2902, ,2090706-02p

191, ,2071597-02, ,2009000-02, ,1990027-02, ,1970350-02, .1950389-02,

192, .1929964-02, .1859390-02, ,1808887-02, .1827309-02, .1806022-02,

193, ,1783568-02, .1761031-02, ,1733138-02, ,1715010-02, .1691699-02,

194, .15680181-02r .1644484-02, ,1620599-02, .1596546-02, ,1572334-02r
195, .1507700-02, ,1522609-02, .1516203-02, ,0000000 , ,000000
196, SEND
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197. 12 04100 A
198, 0.0 ,002 ,006 ,01 ,025 ,06 ,15 04201 A
.199, .4 7 1,0 1.5 2.5 04202 A
200, 10 .95 1 3 0.5 04300 A
201. 0.0 .05 -2 ,25 .35 ,45 .6 0 401 A
202, .75 ,85 ,95 ,98 1,0 00q02 A
203. ,0141351 05100 A
204. 1,02732+06 07100 A
205, 4,15850+04 07200 A
206. 0.0 07300 A
207, .4q 11.823 ,01. ,9 ,9 600, 08100 A
208, 3,3909+05 09600 A
209, ,2 11100 A
210. N 'ITROGEN 14,008 -,768 11201 A
211. 0 OXYGEN 16.0 -.232 11202 A
212, 100, 1000, 5000, 13100 A
213, N2 COL.D AIR NONEi N 2 8,G OO 5000, 1
214, 3,51515 2
215, -1054.545 6.08115' 3-51515 3
216, 105 ,545'5' 6,08115 4
217. 02 COLD AIR NONE. ( 2 G 100, 5000, 1
218, 3.53 2
219. '1059.09 6.06489 3.53 3
220, -1059,09 6,06489 4
221 13LAST
222.. 15201 A
223. 15202 A
22, 15203 A
225.. 15204 A226, 294,4 294,4 291,4 294 1. 294 .l 294.L4. 2911-9 16201 A227, 294,4 294,4 291,l 291 . 29.292929 , 294.4 29.q 16202 A228, 20q,4 294.4 294,4I 294.4 294. 294.4 294,4 16203 A229 294, 2929 29,4,4 91, 29,4,4 294, 294,4L 16204 A230,
231, 16601 A

232, 16602. A

233, 16603 A

234,. 166011 A

235, 16605 A
236, 16606 A

237, 16607 A

238 16608 A
239. 16609 A
2 3 9 , .1 6 6 1 0 A
2410 16611 A

242, 16612 A
2 LAT A
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Figure A-2. SSME 1odel Nozzle Contourl:

Area Ratio = 77.5

Length = 0.376 m (14.825 in)
RT = 0.014351 m (0.565 in)
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A.3 INPUT DATA FOR BACK AND CUFFEL PREDICTIONS

1o. 10100420210212000000 JPL DATA AIR CARDS 01100 J

2V, 2 02100 J

3.,. 24 03100 J

4. 0,01 0,05 0.1 0,2 0,4 1,0 2,0 03201 J

5 -3,761 3.417 4,107 4,234 4,361 1,488 4,575 03202 J

6, 4,609 4.633 4,647 4,676 4,720 11,781 -4,907 03203 J

7, 5,063. 5,258 5,374 03204 J.

8, 13 04100 J

9, 0,0 0,002. 0.006 0,01 0,025 0,06 0,15 04201 J

10,. 0.4 0.7 1,0 1,5 2,5 14,0 04202 J

11,. 10 0,95 1 3. .5 04300 J

12, 0,0 0,05 0,12 0.,25 0,35 0,45 0,6 04'101 J

13,- 0.75 0,875 0,95 0,985 0,99 1,0 04402 J

14. 1.0 05100 J

15, ,20833 .20833 ,20833 ,20833 ,20333 ,20833 ,20833 05201 J

16, ,20833 .1925 ,1592 .1374 ,,153 ,09325 .07833 05202 J

17, ,07233 ,06817 ,06665 ,06708 ,0745: ,08517 ,10708 05203 J

18,. 134 ,1685 ,189, 052011 J

19, 10,21 07100 J

20, 240,97' 07200 J

21, 0,0 07300 J

22, 0,44 11,82. 0,018 0, 9 09 08100 J

23, 36974 09600 J

24, 2 11101 J
25, N NITROGEN 14,000 -,768 11201 J

26, 0 OXYGEN 16,0 -,232 11202 J

27, 100, 1000, 5000, 13100 J

28, N2 .COLD AIR NUNE N 2 G 100, 5000, 1

29,. 3,51515 2
30,. L054,545 6,08115 3,51515 3

31, -1054,545 6,00115 1
32, 02 COLD AIR NONE: 0 2 G 100. 5000, 1

33. 353. 2

34. -1059,09 6,06489 3,53 3
35. -1059,09 6,06489 4
36, 13LAST

37, 0,9972 0,9972 0,9972 0,9972 0,9972 0,9972 0,9972 15101 J

38, 0.9972 0,99635 0,99257 0,98703 0,9740 0,9370i 0,8659 15102 J

39,. 0,7807 0,6768 0,4987 0,3512 0,2317 0,11489 0,05927 15102 J

40, 0,02767 0,016555 0.01211
41 , 15201 J

42, 15202 J
43, 15203 J
114 15204 J

45, 690, 690) 690, 690, 690,. 690, 690, 16201 J

46, 690, 691, 707, 72 4, 743, 775, 823, 16202 J

47, 842, 810,. 808, 789, 782. 758, 726. 16203 J

40, 693, 660, 649, 16204 J
49,. 16601 J
50, 16602 J
51, 16603 J

52,. 16601 J
53,. 16605 J

54, 16606 J

55, 16607 J

56,. 16608 J
57 16609 J

58,. 16610 J
59 16611 J

60,. 16612 J

61,. , LAST J
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